

iMOCO4E

Intelligent Motion Control under Industry 4.E

D3.2 Perception and instrumentation: Layer 1: requirements and specifications (Final Version, V1.0)

Due Date: M18 - 2023-02-28

Abstract:

From the IMOCO4.E Use-cases, Pilots and Demos obtained, global requirements need to be derived which will serve as constraints for the development of new AI and near-to-the-edge hardware and instrumentation at Layer 1: sensor and actuator development and their design needs to be aimed on the interaction with the higher layer levels: 2, 3 to 4. It poses requirements in the embedded software stack to enable compatibility and hardware-software co-development.

From the IMOCO4.E Use-cases, Pilots and Demos information observed, it can be noted that the divergence in requirements is large, in particular when centralized controlled motion is compared to smart distributed sensing, smart distributed control and smart distributed actuation. Also, the level of interfacing is (still) broad, varying from analogue (0-10 volts, 4-20 mA), to SPI, USB and all kinds of other digital interfaces. The main backbone communication is via EtherCAT or CAN-Open (or similar real-time bus up to DMA).

The variety in the required control loop speed is large too: ITEC doing 100 kU/hour down to vibration and swing control of a few Hz. The requirement for consumed power is limited by the battery-operated sensors systems versus the wired or contactless powered sensor applications.

What is an open issue is the amount of 'new' data that is required from the sensors and actuators beyond the functional set-point data exchange. This kind of data will be required for BB-5 to BB-9 and needs to be developed i.e., integrated into new hardware layer designs. Furthermore, representative sensors and actuators behavior models are needed to enable realistic Digital Twin models.

How smart does a sensor, encoder, controller, drive and actuator need to (or can) be to create motion systems more effectively and suited for AI and Digital Twining? The design platform and architecture need to be changed accordingly and many of the BB defined need to be re-defined (and re-developed or adjusted) with the second revision.

Grant Agreement Number	101007311
Project Acronym	IMOCO4.E
Project Full Title	Intelligent Motion Control under Industry 4.E
Starting Date	1 st September 2021
Duration	36 months
Call Identifier	H2020-ECSEL-2020-2-RIA-two-stage
Торіс	ECSEL-2020-2-RIA
Project Website	www.imoco4e.eu
Project Coordinator	Arend-Jan Beltman
Organisation	SIOUX TECHNOLOGIES BV (SIOUX)
Email	Arend-Jan.Beltman@sioux.eu

Project Information

Document Information

Work Package	WP3 - Perception and instrumentation Layer based on AI at the edge
Lead Beneficiary	EMC
Deliverable Title	Perception and instrumentation Layer requirements and specifications (2 nd iteration)
Version	1.0 (starting from 0.0)
Date of Submission	11/04/2023
Author(s)	Mart Coenen, mart.coenen@emcmcc.nl

	Sajid Moł	amed (I]	ГЕС), <u>sajid</u>	l.mohame	d@iteceq	uipment.c	<u>com-</u> Pilot 2	
	Henry Sto	utjesdijk	(PMS), he	nry.stout	jesdijk@p	hilips.cor	<u>n</u> - Pilot 4	
	Ansgar Bergmann (STILL),ansgar.bergmann@kiongroup.com - Demo 3							
	Eric Zoeb	(Edilásio	o) eric.zoeł	o@edilasi	o.pt - Der	no 2		
	Gabriel R	beiro (E	dilásio) <mark>ga</mark> l	briel.ribei	ro@edilas	<u>sio.pt</u> - De	emo 2	
	Rosana D	as (INL)	rosana.dia	as@inl.in	- T3.2/B	B3		
Contributor(s)	Marco Ma	rtins (IN	L) <u>marco.</u> 1	<u>martins@</u>	<u>inl.int</u> - T	3.2/BB3		
	Álvaro Ar	co (Oroli	ia) <u>alvaro.a</u>	arco@oro	lia.com - 1	BB1		
	Zdenek H	avranek ((BUT) <u>zde</u>	nek.havra	nek@ceit	ec.vutbr.c	<u>z</u> - Layer 1	
	Lars Meye	er (IMST) <u>lars.meye</u>	er@imst.o	<u>le</u> - L1			
	Alfie Kea	y (Tynda	all, ADI,	EMD) <u>alf</u>	ie.keary@	tyndall.ie	<u>-</u> UC3	
	Marvin W	viedeman	n (IML)	<u>marvin.w</u>	iedemann	@iml.frau	<u>inhofer.de</u> -	Layer
	1/3 and D	emonstra	tor 3					
	Name Sur	name (O	rganizatior	ı), email				
Internal Reviewer(s)	Lorenzo Diana (EVI), <u>lorenzo.diana@huawei.com</u>							
	Vincent C	amus (R	EEX), vinc	ent.camu	s@reexer	n.com		
Document	Dr	aft			F	'inal	X	
Classification								
Deliverable Type	R	Х	DEM		DEC		OTHER	
Dissemination Lever	PU	Х	CO		CI			

History					
Version	Issue Date	Status	Distribution	Author	Comments
0.0	14-11-2022	Draft	CO	Mart Coenen	
0.1	21-01-2023	Draft	CO	Mart Coenen	
0.2	20-02-2023	Draft	CO	Mart Coenen	
0.3	01-03-2023	Draft	CO	Mart Coenen	
1.0	11-04-2023	Final	CO	Mart Coenen	

Type of Cont	Type of Contribution				
Partner	Description of Contribution to Contents				
BUT	Requirements definition on Layer 1 concerning low power wireless vibration sensors				
	development for UC1 together with Gefran				
EDI					
Gefran					
IML	Submitted content for Layer 1/3 and Demonstrator 3.				
IMST	Added requirements on Layer 1 as well as support for Pilot 4 requirements.				
INL/ECS	Submitted content for BB1 and Demonstrator 2				
ITEC	Requirements gathering, classification and coordination. Provided Pilot 2 content.				
OROLIA	Submitted content for BB1 the 23 rd of December 2022.				
EVI	Extended requirements concerning Pilot 3				
Tyndall	Submitted content for Use Case 3 (UC3) on Tuesday 20th December 2022.				
(TNI\UCC)					
ADI, EMD					

Table of Contents

List of Figures7			
List of Tables7			
Abbreviations	8		
Executive Summary	11		
1. Introduction	12		
1.1 Purpose of the Document	12		
1.2 Structure of the Document	12		
1.3 Requirements gathering process	12		
1.4 Intended readership	12		
2. Requirements specification for IMOCO4.E	13		
2.1 Requirements gathering process	13		
2.2 Instrument layer requirements classification	13		
2.3 Requirement coding scheme	14		
3. System-level requirements	16		
3.1 Architectural requirements on Layer 1	16		
3.1.1 Requirements on layer 1: Sensors, Actuators and Network	3.1.1 Requirements on layer 1: Sensors, Actuators and Network		
3.1.1 Requirements on layer 2			
3.1.2 Requirements on layer 3			
3.2 Connectivity requirements			
4. Building block requirements	23		
4.1. BB1	23		
4.2. BB3	24		
4.3. BB8	26		
4.4. BB9			
4.5. BB10	29		
5. Pilot requirements	30		
5.1 Pilot 1	30		
5.2 Pilot 2			
5.3 Pilot 3	30		
5.4 Pilot 4	30		
5.5 Pilot 5	31		
6. Demonstrator requirements	32		
6.1. Demonstrator 1	32		

6.2.	Demonstrator 2	
6.3.	Demonstrator 3	
6.3.1.	Radar based sensors	
6.3.2.	Camera-based sensors	
6.3.3.	Lidar-based sensors	
6.4. shapeo	Demonstrator 4 - Vision-based (AI) pick & place robotics for randomly arranged d bottles	and differently
7. U	Use-case requirements	
7.1.	Use-case 1	
7.2.	Use-case 2	
7.3.	Use-case 3 – Tactile Robot Teleoperation	
7.4.	Use-case 4	45
7.5.	Summary of the specifications and requirements	46
8. C	Operability requirements	47
8.1	Safety and safe operation	47
8.1.1	Motion safety	47
8.1.2	Electrical safety	
8.1.3	Electromagnetic compatibility: emission and immunity requirements	
8.1.4	Radio equipment	
9. C	Conclusion	49
10.	References	

List of Figures

Figure 1.1 – IMOCO4.E framework	13
---------------------------------	----

List of Tables

Table 3.1- Requirements on layer 1 – sensors, actuators and networks	.16
Table 3.2 - Requirements on layer 3 – system behavior layer	.21

Abbreviations

Abbreviation	Explanation
3D	3 Dimension
ADAT	Automatic Die Attach
AGV	Autonomous Ground Vehicle
AMC2	Access Modular Controller
AI	Artificial Intelligence
API	Application Programming Interface
BBx (e.g., BB1)	Building Block x (e.g., Building Block 1)
CAD	Computer-Aided Design
CAN-OPEN	Controller Area Network – the Open Communication Solution Dissemination
	Project
CD	Continuous Development
CI	Continuous Integration
CNC	Computer Numerical Control
COTS	Commercial Off-The-Shelf
DC	Direct Current
DevOps	Development Operations
DoF	Degree-of-Freedom
DMS	Distributed Message Service
DT	Digital Twin
DTA	Digital Twin Aggregation
DTI	Digital Twin Instance
DVC	Data Version Control
Dx.x (e.g., D2.4)	Deliverable x.x (e.g., Deliverable 2.3)
EtherCAT	Ethernet for Control Automation Technology
ERP	Enterprise Resource Planning
FB	Feedback
FPGA	Field Programmable Gate Array
GAN	Generative Adversarial Network
GUI	Graphical User Interface
HMI	Human-Machine Interface
НТТР	HyperText Transfer Protocol
HW	Hardware
I/O	Input/Output
IMOCO4.E	Intelligent Motion Control under Industry 4.E
IPC	Industrial Personal Computer
IRT	Isochronous Real Time
IT	Information Technology
LIDAR	LIght Detection And Ranging

LIMS	Laboratory Information Management Systems
MBSE	Model-Based Systems Engineering
МСР	Motion Control Platform
MES	Manufacturing Execution System
MIMO	Multi-Input Multi-Output
ML	Machine Learning
MLOps	Machine Learning Operations
MQTT	Message Queuing Telemetry Transport
M&E	Motor and Encoder
NFC	Near Field Communication
OPC-UA	Open Platform Communications – Unified Architecture
PC	Personal Computer
РНР	Hypertext Preprocessor
PIL	Processor-in-the-Loop
PL	Performance Level
PLC	Programmable Logic Controller
QA	Quality Assurance
REST	REpresentational State Transfer
RFID	Radio-Frequency Identification
RGB-D	Red, Green Blue – Depth
RL	Reinforcement Learning
ROS	Robot Operating System
RTOS	Real-Time Operating System
R&D	Research & Development
SaaS	Software-as-a-Service
SAP	Systems, Applications and Products in data processing
SCADA	Supervisory Control and Data Acquisition
SE	System Exploitation
SI	System Integration
SILx (e.g., SIL3)	Safety Integrity Level x
SLAM	Simultaneous Localization And Mapping
SO	System Operational
SoC	System-on-Chip
SPI	Serial Peripheral Interface
ST	Scientific and Technological
SW	Software
TCP/IP	Transmission Control Protocol/ Internet Protocol
TOF	Time-of-Flight
TSN	Time-Sensitive Networking
UCx (e.g., UC3)	Use Case x (e.g., Use Case 3)
UI	User Interface

UPS	Uninterrupted Power Supply
USB	Universal Serial Bus
VR	Virtual Reality
WAN	Wide Area Network
WLAN	Wireless Local Area Network
WPx (e.g., WP2)	Work Package x (e.g., Work Package 2)
XIL	X-in-the-Loop
.NET	Network Enabled Technologies

Executive Summary

Task 3.1 Instrumentation Layer requirements and specifications

(Leader: EMC; involved: SCC, UWB, EDI, ROV, TUE, ING, TNL, GMV, ITML, INL, NXP, TECO, CNET, OE, TNO, ECS, UMO, EVI, IKE, COR, TNI, VIS)

The Aim of Work package 3 "Instrumentation Layer design and development" is dedicated to the development of smart sensing, actuating components, drive and control ECUs as new AI and near-to-theedge hardware and instrumentation for the I-MOCO4.E platform (the 'Layer 1' elements) and their proper interconnection with the higher levels of the motion control system. It deals with novel communication interfaces for fast and reliable data acquisition by means of various wired and wireless sensors providing high fidelity information about the actual state of the controlled plant. Power electronics and low-level control of various actuator types will be developed as well. The Instrumentation Layer building blocks lay foundations for the employment of advanced software algorithms of the higher Motion Control Layer which are pursued in WP4.

Task 3.1 will precise and update the instrumentation layer requirements briefly sketched in Task 2.3 and 2.4. The task outputs will also be influenced by communication with both consortium and external industrial partners (through WP2). The collected requirements will grow into detailed specifications on Instrumentation layer (**D3.1**, D3.2 - iterative process described in Task 2.3). The final requirements: D3.2, are tightly related to the pilot, demo and use-case application needs (outputs of Task 7.1) and to the initial testing results of BB sub-systems (partly adopted from liked projects) as outputs from Tasks 6.2 and 6.3. The work of WP3 will be broken into the following subtasks:

- 1. Analysis of interaction/ interferences with other mature facilities and equipment (i.e., re-used existing modules i.e., OEM and COTS modules and components)
- 2. Requirements and specifications for signal and image processing algorithms based on relevant pilots, further linked to Task 3.3 (UWB, EDI, TUE, TNL, ITML, CNET, GEF, IKE, TNI)
- 3. Requirements and specifications for sensors (e.g., velocity, acceleration, acoustic, cameras, etc.) and actuators (e.g., piezo movers, reluctance actuators, etc.), further linked to Task 3.2 (INL, EMC, ECS, SIE, TNO, OE)
- 4. Wireless requirements analysis and technology evaluation, specification for robust and reliable WSN, further linked to Task 3.4 (UWB, EDI, TNL, INL, OE, ECS, UMO, IKE, COR, TNI, VIS)
- 5. Requirements and specifications for high-speed vision sub-components, further linked to Task 3.5 (TNO, SCC, UWB, INL, NXP, UMO)
- 6. Requirements and specification for smart servo drive ECUs, further linked to Task 3.6 (SCC, ING, TNL, EMC)
- 7. Requirements and specification for multi-many-core embedded control HW, further linked to Task 3.7 (SCC, TUE, ING, TNL, FAG, NXP, SIE, IMA, UMO, EVI)

1. Introduction

1.1 Purpose of the Document

The purpose of the document is to collect the foreseen needs in specifications and requirements for Layer 1: "Instrumentation Layer design and development". Task 3.1 is dedicated to the development of smart sensing and actuating components and drive ECUs of the IMOCO4.E platform (the 'Layer 1' elements) and their proper interconnection with the higher levels of the motion control system, including the behavior modeling (if necessary) to be used with the Digital Twin simulation environment.

1.2 Structure of the Document

The initial structure of the document is straight forward means to collect the requirements and specifications of the partners involved. In this second part of task 3.1, the requirements and specifications will be grouped for the partners dealing with the developments in WP3.

1.3 Requirements gathering process

The partners of all IMOCO4.E Pilots, Demos and Use-cases, who have dedicated needs w.r.t. the Layer 1 developed components, to be incorporated in their Pilots, Demos and Use-Cases applications, either OEM, COTS or dedicated developed, have contributed to this task.

Based on the least common nominator of these collected requirements, a selection shall be made w.r.t. the requirements which can be implemented by the partners involved in the development of Layer 1 contributions.

1.4 Intended readership

During the process of gathering the specifications and requirements all partners of IMOCO4.E are requested to read and give their input and comments on this document. Thereafter, the resulting and condensed specifications and requirements will be leading for the partners involved in WP-3. Furthermore, all partners of IMOCO4.E will be informed about which specifications and requirements will most likely be met and which specifications and requirements need to be resolved in another manner.

Figure 1.1 – IMOCO4.E framework

2. Requirements specification for IMOCO4.E

2.1 Requirements gathering process

During the first few months of the project, the specifications and requirements were vague, leading to the initial deliverable D3.1. Now, halfway through the project, these specification and requirements have become clearer, such that the developments can follow these tighter specification and requirements of smart sensing and actuating components and drive ECUs of the IMOCO4.E platform, leading to this deliverable D3.2. It is intended to have an updated version when entering the final stage of the project to reflect the progress and implementation of these hardware related specifications and requirements.

N.B. This 3rd deliverable (D3.3) is not foreseen in the master project plan for IMOCO4.E.

2.2 Instrument layer requirements classification

The requirements are classified using the following characteristics (partially derived from the ISO 25010 standard on software and data quality):

- 1. Interfaces and connectivity
- 2. Maintainability represents the degree of effectiveness and efficiency with which a product or system can be modified to improve it, correct it or adapt it to changes in environment, and in requirements. This characteristic is composed of the following sub-characteristics:
 - a. Modularity A system is modular when it can be decomposed into several components that may be mixed and matched in a variety of configurations. The components can connect, interact, or exchange resources, by adhering to a standardized interface.
 - b. Analysability -
 - c. Testability -

- 3. Performance
- 4. Compatibility Degree to which a product, system or component can exchange information with other products, systems or components, and/or perform its required functions while sharing the same hardware or software environment.
 - a. Interoperability Degree to which two or more systems, products or components can exchange information and use the information that has been exchanged.
 - b. Co-existence
- 5. Usability Degree to which a product or system can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use.
 - a. Operability Degree to which a product or system has attributes that make it easy to operate and control.
- 6. Reliability Degree to which a system, product or component performs specified functions under specified conditions for a specified period of time.
- 7. Security Degree to which a product or system protects information and data so that persons or other products or systems have the degree of data access appropriate to their types and levels of authorization.
- 8. Portability IMOCO4.E methodology will enable each machine to maintain excellent performance under slight variations in machine conditions, with the use of ML and advanced learning control. This enables the portability of production processes across multiple machines, since processes will run almost identically on these machines.
 - a. Adaptability Degree to which a product or system can effectively and efficiently be adapted for different or evolving hardware, software or other operational or usage environments.
- 9. Cost
- 10. Scalability
- 11. Tools/toolchains
- 12. Safety
- Note: For future projects it may be better to have the task ID instead of the deliverable ID, since the deliverables get different updated indexes and keep previous requirements, this will mix-up different indexes.

2.3 Requirement coding scheme

Each requirement ID is prefixed with Req-, the deliverable ID (D3.1/ D3.2 for this deliverable), the applicable IMOCO4.E relation(s),

- Lx: layer x
- Bx: BB x
- Px: pilot x
- Dx: demonstrator x
- Ux: use-case x

the optional reference framework-specific relation,

- hw: hardware
- sw: software
- fw: firmware

• com: communication

and the optional requirement classifier.

- SAF: safety
- SEC: security
- DAT: data protection

E.g., Req-D3.1-L1-1, Req-D3.1-P2-hw-SAF-2, Req-D3.1-P2-3. In case of multiple identical codes from the various tasks, a common nominator shall be defined which covers all 'interrelated' requirements.

We make sure that the requirement IDs are unique so that the other deliverables can reference the defined requirement IDs within the IMOCO4.E project.

The requirements are prioritised through the 'MoSCoW' method.

- M: must have (necessary requirements for the IMOCO4.E project)
- S: should have (additional desired requirements with high priority)
- C: could have (additional requirements with low priority)
- W: would have (future requirements, ideally after the completion of the IMOCO4.E project)

We consider the following requirement verification methods:

- I: inspection (observation using basic senses)
- D: demonstration (use the system as it is intended)
- T: test (more precise and controlled demonstration using scientific principles and procedures)
- A: analysis (validation of the system by scientific methods)

The expected technical maturity will be quantified using the technology readiness level (TRL) criteria.

	TR	Description
	L	
Research	1	Basic principles observed
	2	Technology concept formulated
	3	Experimental proof of concept
Development	4	Technology validated in lab
	5	Technology validated in (industrially) relevant environment
	6	Technology demonstrated in (industrially) relevant environment
Deployment	7	System prototype demonstration in operational environment
	8	System complete and qualified
	9	Actual system proven in operational environment

3. System-level requirements

Should we have IMOCO4.E specific requirements or are these to be copied from COTS devices? The main differences are the smartness of the devices, the need for recognition, latency, cyber-security and their parallelism to enable DT, near-to-the-edge modelling, machine learning and AI.

3.1 Architectural requirements on Layer 1

3.1.1 Requirements on layer 1: Sensors, Actuators and Network

Table 3.1- Requirements on layer 1 – sensors, actuators and networks

ID	Requirement	Priority	Verify	Comments	Tasks
Interfaces an	nd connectivity				
Req-D3.1-	Used vision sensors are easy	S	Ι	EDI	
L1-hw	to connect to a PC-based				
	processing unit (USB2,				
	USB3)				
Req-D3.1-	Sensors must have a reader/	S	Ι	INL/ECS, UWB, EVI	ТЗ.З,
L1-D2-hw	controller connected to upper				T3.2
	layers (through BB1 or BB4)				
	by USB or Ethernet				
Req-D3.2-	Devices for vibration sensing	S	D	BUT, UWB	T3.2
L1-hw-01	should have wireless				
	interface, e.g., BLE.				
Req-D3.2-	Radar sensor has a data	М	Т	IMST	T3.2
L1-hw-02	interface via Ethernet or				
	USB. Ethernet is preferred.				

Maintainabi	ility (modularity, analyzability	, testabili	ty)		
Req-D3.2-	Firmware of sensor can be	S	Т	IMST	T4.5
L1-fw-03	updated via Ethernet or USB				
	interface.				
Performanc	e				
Req-D3.2-	Antenna parameters for the	М	Т	IMST	T3.2
D3-hw	new front end: elevation				
	angle, MIMO configuration.				
	10 dB angle limit for the field				
	of view.				
Req-D3.1-	Robotic gripper and motors	М	D	EDI	
L1-hw	able to hold weight at least				
	0,2 kg				
Req-D3.1-	Sensors must be able to read	М	Т	INL/ECS	T3.2
D2	temperature within the range				
	-40 to 85 °C with at least ± 0.5				
	$^{\circ}$ C accuracy and in the range 0° C to 45° C with at least 0.2				
	$^{\circ}$ C to 45 C with at least 0.5				
Deg D2 1	Sancers must be able to mad	М	т		T2 2
Req-D5.1-	veriations of pressure and	IVI	1	INL/ECS	13.2
D2	temperature at least 10 Hz				
Reg-D3 1-	Pressure and temperature	М	Т	INL/FCS	T3 2
D2	measurement data must be	171	1		13.2
	communicated, at least 1 Hz.				
Req-D3.1-	Sensors must stand the	М	Т	INL/ECS	ТЗ.2,
D2	injection molding pressure				T7.2.2
	and temperature.				
Req-D3.2-	Used camera needs to	М	Ι	IML	T3.4
L1-hw	provide RGB images.				
Req-D3.2-	The vibration sensing device	S	D	BUT, UWB	T3.2
L1-hw-04	should have measurement				
	resolution of at least 0.01				
	m/s ² , at least measurement				
	range +/-4 g and maximal				
	supported acceleration above				
	20 g.	~	_		
Req-D3.2-	Device for vibration sensing	S	D	BUT, UWB	T3.2
L1-hw-05	should be capable of				
	achieving minimum				
Pag D2 2	Device for vibration consing	c	D	DUT	Τ2 2
L1 hw 06	should be able to activate	3	D	DUI	13.2
L1-IIW-00	measurement by motion				
	and/or vibrations				
Reg-D3.2-	Device for vibration sensing	С	D	BUT	T3.2
L1-hw-07	could have simple controls	Ũ			
	(buttons) on the device for				

	basic settings (e.g., on/off,				
	reset).				
Req-D3.2-	Device for motion sensing	S	D	UWB	T3.2
L1-IIW-00	lowest possible latency				
	(below 500us) to allow				
	feedback control.				
Req-D3.2-	Sensors can detect static and	S	Т	IMST	T3.2
D3-hw	moving targets at a				
	maximum distance of at least				
	8 meters in an indoor				
Reg-D3 2-	A fitting Radome covers the	S	Т	IMST	ТЗ 2
D3-hw	upper PCB without causing	5	1		13.2
	an average loss of >3 dB.				
Compatibili	ty (interoperability, co-existen	ice)			
Req-D3.2-	Transmitting hardware in	S	Ι	BUT	T3.2
L1-hw-09	device for vibration sensing				
	should be compatible with				
	receiver based on ESP32				
Pag D3 2	System.	S	т	PUT	та э
L1-hw-10	device for vibration sensing	5	1	DUI	13.2
	should be compatible BLE				
	version 5.0 or newer.				
Req-D7.10-	Enable sensor-controlled	S	Т	This may concern both	T5.2,
P3-fw-117	functions:			data pre-processing	T3.4,
	GA type: Technical			foreseen in T5.2 (BB6)	T3.2
	BBS: BB6, BB8, BB2			and in 13.4 (BB8) as	
	WP5 sub-type [•] Requirement			vision solutions of BB2	
	Parent REO: [Capabilities			(T3.2) and the possible	
	Req-D7.10-P3-hw-15, Req-			additional sensor that	
	D7.10-P3-hw-16]			may be considered for	
				the Pilot 3	
D D7 10		0	T	demonstration,	T O 0
Req-D/.10-	Secure Quality Control via	S		Requirement related	13.2 (T5.2)
P3-1W-201	GA type: Technical			vision camera but also	(13.2) (T3.4)
	BBs: BB2, BB6, BB8, BB9			potentially to cross-	(T5.7)
	Layers: SYS			tasks modelling issue	(T6.7)
	WP5 sub-type: Need			(i.e., both data-driven	
	Parent REQ: [Requirement			modelling and therefore	
	Req-D7.10-P3-fw-117]			Al solutions of	
				BB6/BB8 or different	
Usability (or	perability)			modening approaches	I
Reg_D3 1_	Sensors must be fitted on the	М	T	INI /FCS	T3 2
D2	tool molding area.	141			T7.2.2
		1	1		

Req-D3.2-	Device for vibration sensing should be able to record at	S	Ι	BUT	T3.2
L1-IIW-XX	least 1M of time data points				
	for further data processing.				
Req-D3.2-	Device for vibration sensing	С	Ι	BUT/GEFRAN, UWB	T3.2
L1-hw-xx	could be operatable in				
	industrial environment				
	50178				
Reg-D3.2-	Device for vibration sensing	W	I	BUT/GEFRAN	T3.2
L1-hw-xx	would have ingress		_		
	protection of level IP 54.				
Req-D3.2-	Device for motion sensing	S	Ι	UWB	T3.2
L1-hw-xx	should have ingression				
	protection of level IP 68.				
Reg-D7.10-	Perception functionalities to	М	D	Related to vision	T3.2
P3-hw-15	enable automatic adjustment			camera of BB2	
	of machine behaviour (BB2)				
	,				
	GA type : Functional (AI)				
	BBs: BB2				
	Layers: L1				
	WP5 sub-type: Capability				
	Parent REQ: [Goal Req-				
	D7.10-P3-3]				
Req-D7.10-	Perception functionalities to	S	D	To be investigated	
P3-hw-16	enable automatic adjustment			(there is some	
	of machine behaviour (BB3)			interesting sensor that	
				generate/collect data to	
	GA type: Functional (AI)			implement the alarm	
	BBs : BB3			detection &	
	Layers: L1			classification	
	WP5 sub-type: Capability			scenarios?) Currently	
	Parent REQ: [Goal Req-			not considered	
Reliability (D7.10-P3-3 fault tolerance availability)				
Rea D3 2	Device for vibration sensing	W	T	BUT/GEEPAN	тз 2
L1-hw-17	would be able to operate for	۰v	1		13.2
	at least 10 years.				
Req-D3.2-	Device for vibration sensing	С	Ι	BUT/GEFRAN	T3.2
L1-hw-18	could perform internal self-				
	calibration and self-				
	detect internal fault of the				
	device and report it to the				
	upper layer device.				

Security (cy	ber-security, integrity, confide	entiality, a	uthentic	ity)	
Req-D7.10- P3-SEC-	Security by design	С	Ι	Topic related to: network (BB9 - T5.2),	T5.2, T4.6.
112	GA type : Functional			BB4 platform	T3.2
	BBs : BB9, BB4, BB2			specifications (T4.6)	
	Layers: SYS			and vision cameras $(T2, 2)$	
	WP5 sub-type: Requirement			specifications (15.2)	
	Parent REQ: [Capability Req-D7.10-P3-DAT-14]				
Req-D7.10- P3-SEC-	Security by default	С	Ι	Topic related to network (BB9 - T5.2),	T5.2, T4.6,
113	GA type: Functional			BB4 platform	T3.2
	BBs : BB9, BB4, BB2			specifications (T4.6)	
	Layers: SYS			specifications (T3 2)	
	WP5 sub-type: Requirement			specifications (15.2)	
	Parent REQ: [Capability				
	Req-D7.10-P3-DAT-14]				
Portability (adaptability, replaceability)				
Req-D3.2-	Device for vibration sensing	S	D	BUT	T3.2
L1-hw-19	should be portable to be able				
	to mount it freely on the lift				
	based inspection, e.g., with				
	weight of 100 grams or				
	lower.				
Req-D3.2-	Device for vibration sensing	W	Ι	BUT/GEFRAN, UWB	T3.2
L1-hw-20	would be able to perform				
	wireless connection or				
	galvanic interface (e.g.,				
	USB).				
Req-D3.2-	Device for motion sensing	М	Ι	UWB	T3.2
L1-hw-21	must support wireless				
	with IP68)				
Cost					
Scalability	1		I	1	
Tools/toolch	ains			•	
Safety				•	

3.1.1 Requirements on layer 2

Non-specific.

3.1.2 Requirements on layer 3

Table 3.2 - Requirements on layer 3 – system behavior layer

ID	Requirement	Priority	Verify	Comments	Tasks
Interfaces a	nd connectivity				
	-				
Maintainab	ility (modularity, analyzability, te	stability)			
Req-	Systems perception models	S	D	EDI	
D2.3/D3.1-	should be retrainable by a non-				
L3-D4	Machine Learning expert.				
Performanc	e				
Compatibili	ty (interoperability, co-existence)				
Usability (o	perability)				
Req-D3.1-	The perception model should	S	Т	IML	T3.4
L3-sw	handle as less different data as				
	possible (input: img-data +				
	optional depth data; output: pose)				
Reliability (fault tolerance, availability)				
Security (cy	ber-security, integrity, confidentia	ality, auth	enticity)		
Portability	(adaptability, replaceability)				
Cost					
Scalability					
Tools/toolch	ains				
Safety					

3.2 Connectivity requirements

System-to-system connectivity between layers and systems shall be optimized to limit the bandwidth needed and to obtain safe i.e., tolerable latency. Some latency may be a time lost in the smart device itself, due to the processing of the information at that level. With time-critical processes, the use of time stamping is inevitable.

Connectivity to machines may be wired or wireless again determined by the latency and/or the loss of the wireless link, due to interference or jamming. With friction and mass critical designs, the cable stiffness, device volume or weight of the communication interface is the crucial and dominant.

Wireless data transfer will be slightly faster than wired; 3 versus (typical) 7 ns/m of propagation delay, but the transfer from the electrical to the optical or RF domain and vice-versa will be more time consuming than using straight electrical interfaces. However, while going to the Gb/s data transfer over a single wire-pair, the signal losses will be high too, with the necessity for cable loss correction and/or data reconstruction.

4. Building block requirements

4.1. BB1

ID	Requirement	Priority	Verify	Comments	Tasks
Interfaces and	l connectivity				
Req-D2.3	The interfaces to BB1 shall be	М	Ι		T3.1
	an industry standard (such as				
	USB, Ethernet, expansion port				
	or optical fiber connectors).				
Req-D2.3	BB1 shall support standard	М	Ι		T3.3,
_	and vendor-neutral Wired 1G				T3.4
	Ethernet.				
Req-D2.3	BB1 should have an interface	М	Т		T3.4
	with camera sensors.				
Req-D2.3	BB1 should have enough	Μ	Т		T3.4
	memory to allow for buffering				
	more than 6 images from the				
	camera sensors.				
Req-D3.2-B1	Sensors could be connected to	С	D	To be considered or	T3.1,
	other devices using wireless			discarded by	T3.2
	interfaces.			stakeholders.	
				NEW	
Maintainabili	ty (modularity, analyzability, to	estability)	1	ſ	1
Req-D3.2-B1	The device's firmware should	S	D	To be considered or	T3.1,
	be able to be updated using the			discarded by	T3.2
	defined interfaces.			stakeholders.	
	~	~		NEW	
Req-D3.2-B1	Continuous monitoring of the	С	Т	To be considered or	T3.1,
	hardware to find faulty			discarded by	13.2
	behaviours.			stakeholders.	
Doufournonco				NEW	
Performance	End to End deterministic	М	т		T2 1
Req-D2.5	Latency for time constrained	IVI	1		15.1
	TSN data straams				
Dec D2 2	TSN data streams.	м	т		T2 1
Req-D2.5	Derivery guarantee for rate	IVI	1		15.1
Dec D2 2 or	The interface to/from DD1	м	D		T2 1
Req-D2.5 or $D2.1$	shall support update rates of at	IVI	D		15.1
D3.1	losst 20 kHz to lover 2 and/or				
	BBs				
Reg_D3 2_B1	Deterministic communication	S	D	To be considered or	T3 1
Req-D5.2-D1	should be maintained to	5	D	discarded by	T3.1,
	transmit the signals from the			stakeholders	15.5
	sensors and actuators			NEW	
	(implemented with sampling				
	frequency sensors or regular				
	actuator commands).				
Compatibility	(interoperability, co-existence))	1	1	1

Req-D3.2-B1 Req-D3.2-B1	Sensors and actuators used together must have low interference with each other. Wireless sensors require dedicated frequency bands or interoperable protocols. Devices must have a compatible range of working signals, such as similar voltage levels.	M S	D D	To be considered or discarded by stakeholders. NEW To be considered or discarded by stakeholders. NEW	T3.2, T3.5 T3.1
Usability (ope	rability)	r		1	
Req-D2.3	BB1 shall have a configuration interface to modify all (pre-defined) configuration parameters without requiring firmware changes.	М	D		T3.1
Reliability (fa	ult tolerance, availability)				
Req-D3.2-B1	Sensors and actuators should be self-calibrated, or factory calibrated.	S	Т	To be considered or discarded by stakeholders. NEW	T3.2, T3.5
Req-D3.2-B1	Include redundant sensors to ensure fault tolerance.	С	D	To be considered or discarded by stakeholders. NEW	T3.1
Security (cybe	er-security, integrity, confidenti	iality, auth	enticity)		
Req-D3.2-B1	Wireless broadcast signals should be encrypted to ensure the security of signals.	S	D	To be considered or discarded by stakeholders. NEW	T3.1, T3.2
Portability (a	daptability, replaceability)			[
Cent					
Cost					
Seelek 11:4					
Scalability	DD1 shall offer a saalahla	м	D		T2 1
кеq-D2.3	BB1 shall offer a scalable number of computational resources, e.g., by means of the firmware implementation or by offering a family of processing units with different capacities.	М	D		13.1
Tools/toolcha	ins				
Safety			1	ſ	

4.2. BB3

ID	Requirement	Priority	Verify	Comments	Tasks
Interfaces an	nd connectivity				

Req- D3 1-D2	Controller must provide	М	D	INL/ECS	T3.3
0.1 02	supply, both wireless.				
Maintainabi	liity (modularity, analyzability	v. testabili	tv)		
Performanc	e				
Req-D3.1 - D3-hw	Antenna parameters for the new front end: elevation angle, MIMO configuration. 10 dB angle limit for the field of view.	М	Т	IMST	T3.2
Req- D3.1-D2	Sensors must be able to read temperature within the range -40 to 85 °C with at least ±0.5 °C accuracy and in the range 0 °C to 45 °C with at least 0.3 °C accuracy.	М	Т	INL/ECS	T3.2
Req- D3.1-D2	Sensors must be able to read variations of pressure and temperature, at least 10 Hz.	М	Т	INL/ECS	T3.2
Req- D3.1-D2	Pressure and temperature measurement data must be communicated at least 1 Hz.	М	Т	INL/ECS	T3.2
Req- D3.1-D2	Sensors must stand the injection molding pressure and temperature.	М	Т	INL/ECS	T3.2, T7.2.2
Compatibili	ty (interoperability, co-existen	ce)			
Usability (oj	perability)	м	T		T2 2
D3.1-D2	tool molding area.	IVI	1	INL/ECS	T7.2.2
Reliability (fault tolerance, availability)				
Security (cy	ber-security, integrity, confide	entiality, a	uthentio	city)	
Portability ((adaptability, replaceability)				
Cost					
Scalability	1		1	1	I
Toolaltoolat					
1 0015/1001Cf					

Safety			

4.3.	BB8				
ID	Requirement	Priority	Verify	Comments	Tasks
Interfaces a	nd connectivity				
Maintainab	ility (modularity, analyzability, te	stability)			
Performance	<u>e</u>			•	
Req- D2.3/D3.1- B8-D4	Sim2Real transfer provides synthetically trained object detection algorithms that detect objects of interest in 80% of images with said objects	S	D	EDI	
Compatibil	ity (interoperability, co-existence)			•	
Usability (o	perability)				
Reliability (fault tolerance, availability)	-			
Security (cy	ber-security, integrity, confidenti	ality, auth	enticity)		
Portability	(adaptability, replaceability)	n		1	n
Cost	1			1	
Scalability			1	Γ	
Tools/toolcl	nains	1	1	1	<u> </u>
Safety		1	1	1	<u> </u>

4.4. BB9

ID	Requirement	Priorit	Verify	Comments	Tasks
		у			
Interfaces a	nd connectivity				
Req-D5.1- B9	Support real-time information exchange with a protocol based on message set abstraction (publish/subscribe model) that can handle parallel data streams between multiple endpoints	М	D		T5.2
Req-D5.1- B9	BB9 will be able to aggregate, transform and fuse incoming text-based data from multiple	М	D		T5.2

	sources and of multiple data			
	types (e.g., time-series and			
	cross-sectional data, real and			
	simulated data, raw sensor data,			
	inference result data from AI			
	components).			
Req-D5.1-	BB9 will provide persistent	М	D	T5.2
B9	storage for the aggregated and			
	fused data (see R048-D5.1-B9)			
	in the cloud infrastructure			
	(historical data).			
Req-D5.1-	BB9 will allow all authorized	М	D	T5.2
B9	components to access incoming			
	data streams collected from			
	multiple sources (see R048-			
	D5.1-B9) in real-time via a			
	dedicated API.			
Req-D5.1-	BB9 will allow all authorized	М	D	T5.2
B9	components to access historical			
	data stored in the cloud			
	infrastructure (see R049-D5.1-			
	B9) via a dedicated API.			
Req-D5.1-	BB9 architecture to be based on	S	D	T5.2
B9-sw	microservices to be delivered in			
	containerized form and deployed			
	on the edge/cloud (e.g., using			
	Docker/Kubernetes cluster)			
Req-D5.1-	BB9 will be able to handle time-	S	Т	T5.2
B9	sensitive data streams between			T3.4
	multiple endpoints in real-time			
	while conforming to the			
	bandwidth and latency			
	requirements of connected			
	IMOCO4.E components.			
Req-D5.1-	Support real-time information	М	D	T5.2
B9	exchange with a protocol based			
	on message set abstraction			
	(publish/subscribe model) that			
	can handle parallel data streams			
	between multiple endpoints			
Performanc	е			
Req-D5.1	BB9 must be able to generate	М	D	T5.2
	alerts in real-time (e.g., related			
	to supported cyber-security			
	threat detection, see R063-D5.1-			
	B9).			
Req-D5.1-	All used	S	D	T5.2
B9	libraries/frameworks/component			
	s must not have known security			
	vulnerabilities nor infringement			

	of (open source) license				
	conditions.				
Usability (op	perability)				
Req-D5.1-	BB9 will be designed to support	S	D		T5.2
B9	and be operational in multiple				
	Pilots/Demonstrators/Use Cases				
Reliability (fault tolerance, availability)				
Req-D5.1-	BB9 will be able to continue	S	D		T5.2
B9	operating despite receiving and				
	processing invalid or wrong				
	data.				
Req-D5.1-	Only authorized users will be	S	D		T5.2
B9	allowed to access the system.				
Req-D5.1-	BB9 will provide high	S	D		T5.2
B9	computing availability, having a				
	continuous, uninterrupted, fault-				
	tolerant operation.				
Security				1	r
Req-D5.1-	Data security will be ensured at	S	D		T5.2
B9	rest and in flight.				
Req-D5.1-	Access to the system's data and	S	D		T5.2
B9	services will be granted only to				
	authenticated users and				
	components that have been				
	granted the necessary				
D D5 1	privileges.	G			T5 0
Req-D5.1-	BB9 will support the automated	5	D		15.2
В9	detection of cyber-security				
	and vulnerabilities that				
	anomaly detection techniques to				
	the BBQ data streams				
Reg_D5 1_	The system will alert the user if	8	D		Т5 2
Req-D5.1-	any supported cyber-security	5	D		13.2
D7	threat and vulnerability is				
	detected and present an				
	assessment (see R063-D5.1-				
	B9).				
Safety				1	
Rea-D5 1-	Data safety will be ensured	S	D		T5 2
B9	through Data Replication	~	2		10.2
	support over secure channels				
	between the infrastructure				
	cluster nodes.				
Scalability	·		I		I
Rea-D5 1-	BB9 will be fully scalable so	S	D		T5 2
B9	that it can easily be adapted to				10.2
	new integration needs or				
	changes in performance,				

	reliability, and data volume			
	requirements.			
Tools/toolch	ains			
Req-D5.1-	A GUI will be provided for	С	D	T5.2
B9	configuration purposes of BB9.			
Req-D5.1-	BB9 will provide an appropriate	С	D	T5.2
B9	dashboard for visualizing data			
	and providing insight related to			
	the operation of BB9 (e.g.,			
	system health status, data traffic,			
	performance metrics, alerts)			

4.5. BB10

For the topic "Intelligent motion control", the requirements for Demo 3 and BB10 correspond. The descriptions can therefore be found under Demo 3

5. Pilot requirements

5.1 Pilot 1

No input received.

5.2 Pilot 2

Table 2. Pilot 2 requirements

ID	Requirement	Priorit	Verif	Comments
		у	У	
Req-D3.1-	Operating temperature (in	М	D	Typical working temperature for
P2-01	Celsius): +20 - +24			semiconductor equipment
Req-D3.1-	Control sample rate	М	Т	
P2-02	Min – 8 kHz			
	Max – 20 kHz			
Req-D3.1-	Machine throughput		Т	
P2-03	Min – 60 kUPH	М		
	Max - 100 kUPH (36 ms per	С		
	unit)			
Req-D3.1-	Machine assembly precision			
P2-04	<6 um 1 sigma	М	Т	
	<3 um 1 sigma	С		

5.3 Pilot 3

No input received.

5.4 Pilot 4

In Pilot 4 the main hardware and instrumentation at Layer 1 was already realized during the predecessor project of IMOCO4.E (I-Mech). During this project an EtherCAT motion drive was developed, which allows for extensive monitoring and collection of high frequency motion data. In IMOCO4.E this motion data will be a main source of data.

With the layer 1 developments from I-Mech available, there were no activities on layer 1 planned for Pilot 4 within IMOCO4.E. However, as part of BB10, we want to explore possibilities of path planning on Pilot 4 and potentially extend it with sensor information to enable collision avoidance. For this sensor the requirements are described in the table below.

ID	Requirement	Priority	Verify	Comments	Tasks
Interfaces	and connectivity				
Req-	Sensors shall provide industry	М	Ι		T3.2
D3.2-P4-	standard wired interface for				
com	data exchange (e.g.,				
	EtherCAT, Ethernet or USB).				

Req-	The sensor shall not require a	М	Ι		T3.2
D3.2-P4-	power supply voltage greater				
hw	than 24Vdc.				
Maintaina	bility (modularity, analyzability	, testabilit	y)	•	
Req-	if the sensor has some form of	С	I/D		T3.2
D3.2-P4-	onboard "AI" processing that				
SW	determines its output, the				
	"raw" data of the sensor shall				
	be traceable for analysis				
Performar					
Rea-	The sensor shall undate	S	I/D		T3 2
$D_{3}^{2} P_{4}$	obstacle data with at least 5Hz	5	I/D		13.2
bw	obstacie data with at least 5112.				
Reg_	Within 15m distance the	S	т		тз 2
$D_{3}^{2}P_{4}$	sensor will detect obstacles of	5	1		13.2
bw	at loost 10cm in size with an				
IIW	at least focili ili size with all				
Compatib	accuracy of at least 5cm.				
Compatibl	inty (interoperability, co-existen	ice)			
Usability (onerahility)				
Usability ((perability)				
Reliability	(fault talaranca, availability)				
Kenability	(laut tolerance, availability)				
Socurity (a	when security integrity confide	ntiality a	uthontio	 :++	
Security (C	yber-security, integrity, connue	fillanty, a			
Portability	(adantahility renlaceahility)				
Tortability	(adaptability, replaceability)				
Cost				I	
Cost					
Saalahility					
Scalability					
Tools/tool	hains				
Reg.	The sensor shall have a model	S/C	D		ТЗ 2
D3 2 P4	implementation in a virtual	5/0	D		13.2
D3.2-F4-	any incompany to anothe offling				
SW	environment to enable offline				
	testing.				
Safety		~ /~		1	
Req-	The sensor shall fault safe.	S/C			T3.2
D3.2-P4-	This means that by output of				
hw/sw	the sensor the receiver of the				
	data can determine that the				
	sensor is in a fault state (e.g. a				
	watchdog signal or checksum				
	watchuog signal of checksull				
1	mismatch)			1	1

5.5 Pilot 5

No input received.

6. Demonstrator requirements

6.1. Demonstrator 1

No input received.

6.2. Demonstrator 2

Demonstrator 2 relies mainly on BB3 (novel sensors). The main hardware and instrumentation at Layer 1 for this demonstrator are novel wireless self-powered sensors with pressure and temperature sensing functionality. The requirements for the sensors are described in the table below.

ID	Requirement	Priority	Verify	Comments	Tasks
Interfaces	and connectivity				
Req-	Controller must provide	М	D	INL/ECS	T3.3
D3.1-D2	communication and power				
	supply, both wireless.				
Maintaina	bility (modularity, analyzability	y, testabilit	y)	1	
Performan	ice		1		
Req-	Sensors must be able to read	М	Т	INL/ECS	T3.2
D3.1-D2	temperature within the range -				
	40 to 85 °C with at least ± 0.5				
	$^{\circ}$ C accuracy and in the range 0				
	C to 45 °C with at least 0.3 °C				
	accuracy.				
Peg	Sensors must be able to read	М	т	INI /ECS	тз 2
D3 1-D2	variations of pressure and	IVI	1	INL/LCS	13.2
D3.1 D2	temperature, by at least 10 Hz.				
Req-	Pressure and temperature	М	Т	INL/ECS	T3.2
D3.1-D2	measurement data must be				
	communicated by at least 1 Hz.				
Req-	Sensors must stand the	М	Т	INL/ECS	T3.2,
D3.1-D2	injection molding pressure and				T7.2.2
	temperature.				
Compatibi	lity (interoperability, co-existen	ce)		[
TT 1 11 4 7	1.44				
Usability (operability)	м	Ŧ	DH /DC0	T T2 2
Req-	Sensors must be fitted on the	М	1	INL/ECS	13.2, T7.2.2
D3.1-D2	tool molding area.				17.2.2
Dolighiliter	(fault talaranga availability)				
Renability	(raun tolerance, availability)				
Security (c	vher-security integrity confide	ntiality a	uthentici	itv)	I
Security (C				(, , , , , , , , , , , , , , , , , , ,	

Portability (adaptability, replaceability)							
Cost							
Scalability							
Tools/toolchains							
Safety							

6.3. Demonstrator 3

The sensors and actors used in demonstrator 3 are separated into two groups:

- 1. Vehicle internal sensors and actors, which are part of a series vehicle. These sensors are based on the current state-of-the-art in vehicle control and not considered in IMOCO
- 2. Vehicle attached environment-sensing components (sensors). These are either part of the robotic extension kit of the series vehicle or introduced via IMOCO. These sensors are considered in the following.

The vehicle attached components (mainly sensors) stems from the component groups:

- 3. Radar-based sensors (as described in 6.3.1)
- 4. Camera-based sensors (see 6.3.2)
- 5. Lidar-based systems (see 6.3.3)

The demonstrator 3 operation environment – the warehouse – represents a highly distributed control problem in which many logistic operations are performed in parallel and by several mobile entities (workers, trucks of different types and manufactures). Consequently, the overall process control is distributed over different levels from the single entity up to the high-level warehouse control. This requires sensors with a high degree of interoperability as they have e.g., to provide data to the single truck (e. g. by wired connection) as well to an edge-cloud using robust, reliable as well as security or partly safe communication.

As all sensors groups represent different technology streams, they and their use in demonstrator 3 are roughly described separately in the following.

6.3.1. Radar based sensors

The following requirements for the radar system have been chosen by IMST in the first measurements. They are based on the discussion results with project partners. Further specifications can be done as soon as specific measurement scenarios are clear.

The ones to be clarified are:

- MIMO configuration for angular resolution in azimuth
- Opening angle in azimuth (10 dB)
- Height detection in elevation (for passage under a subway)
- Opening angle in elevation (10 dB)
- Radiated power (EIRP)

The radar should be able to face following scenarios at maximum given distance of 10 meters:

- Travel path limited by fixed/static equipment such as shelves, high storage, columns, etc.
- Obstacles in the travel path: people (moving, standing), people crossing the travel path, goods from the storage area, size and min./max. distance.
- Lateral paths and obstacles: Detection to be determined experimentally

6.3.2. Camera-based sensors

The main innovation in IMOCO referring to demonstrator 3 is made within this sensor group. Following the main research aspiration in AI, application of AI-methods (like DNNs) in done on visual image data mainly. Therefore, most of the requirements named below are focussing this sensor group.

6.3.3. Lidar-based sensors

This sensor group can be seen as the current industrial state-of-the-art for robotic environment sensors. Within IMOCO demonstrator 3 will partly make use of lidar based sensors, whereas they are not in the innovation focus of the demonstrator. Nevertheless, the main requirements relevant to this sensor group are given in the requirement table below.

ID	Requirement	Priority	Verify	Comments	Tasks
Interfaces a	and connectivity				
Req-D3.2-	A plugin must exist to use the	М	Ι	IML	T3.4
D3-sw	cameras within the GStreamer				
	framework.				
Req-D3.1-	2D lidar sensers shall provide	М	Α	STILL	
D3-hw-x	an ethernet interface for				
	configuration and data transfer				
Req-D3.1-	2D lidar sensors shall provide	М	Ι	STILL	
D3-hw-x	industrial grade connection				
	technology like M12				
	connectors.				
Req-D3.1-	2D lidar sensors shall provide	М	Ι	STILL	
D3-sw-x	UDP communication for				
	measurement data				
Req-D3.1-	2D lidar sensors should be	S		STILL	
D3-hw-x	configurable completely by				
	ethernet.				
				~~~~~	
Req-D3.1-	The Edge Device shall be	М	A	STILL	
D3-hw-x	equipped with a high-speed				
	Ethernet interface				
Maintainab	oility (modularity, analyzability	, testability	y)		

Performance         Req-D3.1       Use of the 77-81 GHz band: 2       S       D       IMST       T3.2         -D3-sw       GHz in the first measurements.       S       D       IMST       T3.2         Req-D3.1-       The perception model should D3-sw       S       T       IML       T3.4         Barbon Markow Mark	Req-D3.1- D3-hw-x	The system shall be easily accessible via over the air access	М	Ι	STILL	
Performance         Req-D3.1       Use of the 77-81 GHz band; 2       S       D       IMST       T3.2         -D3-sw       GHz in the first measurements.       D       IMST       T3.2         Req-D3.1-       The perception model should D3-sw       S       T       IML       T3.4         Req-D3.1-       The perception model should D3-sw       S       T       IML       T3.4         Req-D3.1-       The sensors shall capture Information in RGB format. Optionally, depth information shall be acquired. The acquisition rate shall be at least 10 frames per second.       M       D       STILL       D         Req-D3.1-       The camera field of view shall be in a reasonable range to capture all surrounding objects in both driving directions (e.g., more than 60 degrees)       M       I       STILL       STILL         D3-hw       The eage processing unit shall be able to infer state of the art deep neural network architecture with at least 5       M       D       STILL       E         D3-hw       The eque device shall fulfil current standards and guidelines for intralogistics usage.       M       I       STILL       E         Compatibility (interoperability, co-existence)       R       I       STILL       T3.4         D3-hw       The vision-based solutions shouldn't require different cameras if possible.       M       I <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Req-D3.1 -D3-sw       Use of the 77-81 GHz band: 2 GHz in the first measurements.       S       D       IMST       T3.2         Req-D3.1- D3-sw       The perception model should work independent of different environments. In the best case without re-training.       S       T       IML       T3.4         Req-D3.1- D3-hw       The sensors shall capture Information in RGB format. Optionally, depth information shall be acquired. The acquisition rate shall be at least 10 frames per second.       M       D       STILL       STILL         Req-D3.1- D3-hw       The camera resolution shall be at least 640x480       M       I       STILL       STILL         D3-hw       The camera field of view shall D3-hw       M       I       STILL       STILL         D3-hw       The camera field of view shall D3-hw       M       I       STILL       STILL         D3-hw       The edge processing unit shall be able to infer state of the art deep neural network architecture with at least 5 frames per second.       M       D       STILL       STILL         D3-hw       The edge device shall fulfil current standards and guidelines for intralogistics usage.       M       I       STILL       STILL         D3-hw       The vision-based solutions frames per second.       M       I       STILL       STILL         D3-hw       The vision-based solutions shouldn't require different cam	Performan	ce				
Req-D3.1- D3-sw       The perception model should work independent of different environments. In the best case without re-training.       T       IML       T3.4         Req-D3.1- D3-hw       The sensors shall capture Information in RGB format. Optionally, depth information shall be acquired. The acquisition rate shall be at least 10 frames per second.       M       D       STILL         Req-D3.1- D3-hw       The camera resolution shall be at least 640x480       M       I       STILL         Req-D3.1- D3-hw       The camera field of view shall be in a reasonable range to capture all surrounding objects in both driving directions (e.g., more than 60 degrees)       M       I       STILL         Req-D3.1- D3-hw       The edge processing unit shall be to infer state of the art deep neural network architecture with at least 5 frames per second.       M       D       STILL         Req-D3.1- D3-hw       The environmental network architecture with at least 5 frames per second.       M       D       STILL         Req-D3.1- D3-hw       The environmental network architecture with at least 5 frames per second.       M       I       STILL         Req-D3.1- D3-hw       The vision-based solutions shouldn't require different cameras if possible.       M       I       STILL         Compatibility (operability)       I       The vision-based solutions scenarios.       S       I       IML       T3.4	Req-D3.1 -D3-sw	Use of the 77-81 GHz band: 2 GHz in the first measurements.	S	D	IMST	T3.2
Req-D3.1- D3-hw       The sensors shall capture Information in RGB format. Optionally, depth information shall be acquired. The acquisition rate shall be at least 10 frames per second.       M       D       STILL         Req-D3.1- D3-hw       The camera resolution shall be at least 640x480       M       I       STILL         Bash       At least 640x480       M       I       STILL         D3-hw       at least 640x480       M       I       STILL         D3-hw       be in a reasonable range to capture all surrounding objects in both driving directions (e.g., more than 60 degrees)       M       I       STILL         Req-D3.1- D3-hw       The edge processing unit shall be able to infer state of the art deep neural network architecture with at least 5 frames per second.       M       D       STILL         D3-hw       The environmental requirements for the camera and edge device shall fulfil current standards and guidelines for intralogistics usage.       M       I       STILL         Compatibility (interoperability, co-existence) Req-D3.1- D3-hw       The vision-based solutions shouldn't require different cameras if possible.       S       I       IML       T3.4         D3-hw       Definition of Measurement       M       I       IML       T3.4         D3-hw       Definition of Measurement       M	Req-D3.1- D3-sw	The perception model should work independent of different environments. In the best case without re-training.	S	Т	IML	T3.4
Req-D3.1- D3-hw       The camera resolution shall be at least 640x480       M       I       STILL         Req-D3.1- D3-hw       The camera field of view shall be in a reasonable range to capture all surrounding objects in both driving directions (e.g., more than 60 degrees)       M       I       STILL         Req-D3.1- D3-hw       The edge processing unit shall be able to infer state of the art deep neural network architecture with at least 5 frames per second.       M       D       STILL         Req-D3.1- D3-hw       The environmental requirements for the camera and edge device shall fulfil current standards and guidelines for intralogistics usage.       M       I       STILL         Compatibility (interoperability, co-existence)       I       IML       T3.4         D3-hw       Shouldn't require different cameras if possible.       S       I       IML       T3.4	Req-D3.1- D3-hw	The sensors shall capture Information in RGB format. Optionally, depth information shall be acquired. The acquisition rate shall be at least 10 frames per second.	М	D	STILL	
Req-D3.1- D3-hw       The camera field of view shall be in a reasonable range to capture all surrounding objects in both driving directions (e.g., more than 60 degrees)       M       I       STILL         Req-D3.1- D3-hw       The edge processing unit shall be able to infer state of the art deep neural network architecture with at least 5 frames per second.       M       D       STILL         Req-D3.1- D3-hw       The environmental equirements for the camera and edge device shall fulfil current standards and guidelines for intralogistics usage.       M       I       STILL         Compatibility (interoperability, co-existence)       I       IML       T3.4         D3-hw       The vision-based solutions shouldn't require different cameras if possible.       S       I       IML       T3.4         Usability (operability)       Definition of Measurement scenarios.       M       I       IMST       T3.2	Req-D3.1- D3-hw	The camera resolution shall be at least 640x480	М	Ι	STILL	
Req-D3.1-       The edge processing unit shall be able to infer state of the art deep neural network architecture with at least 5 frames per second.       M       D       STILL         Req-D3.1-       The environmental requirements for the camera and edge device shall fulfil current standards and guidelines for intralogistics usage.       M       I       STILL         Compatibility (interoperability, co-existence)       Image: Compatibility (interoperability, co-existence)       Image: Compatibility (interoperability, co-existence)         Req-D3.1-       The vision-based solutions shouldn't require different cameras if possible.       S       I       IML       T3.4         Usability (operability)       M       I       Image: Compatibility       T3.2         Req-D3.1       Definition of Measurement scenarios.       M       I       IMST       T3.2	Req-D3.1- D3-hw	The camera field of view shall be in a reasonable range to capture all surrounding objects in both driving directions (e.g., more than 60 degrees)	М	I	STILL	
Req-D3.1-       The       environmental       M       I       STILL         D3-hw       requirements for the camera and edge device shall fulfil current standards and guidelines for intralogistics usage.       M       I       STILL         Compatibility (interoperability, co-existence)       I       Image: Compatibility (interoperability, co-existence)       Image: Compatibility (interoperability, co-existence)         Req-D3.1-       The vision-based solutions shouldn't require different cameras if possible.       S       I       IML       T3.4         Usability (operability)       M       I       IMST       T3.2         -D3       Scenarios.       M       I       IMST       T3.2	Req-D3.1- D3-hw	The edge processing unit shall be able to infer state of the art deep neural network architecture with at least 5 frames per second.	М	D	STILL	
Compatibility (interoperability, co-existence)Req-D3.1- D3-hwThe vision-based solutions shouldn't require different cameras if possible.SIIMLT3.4Usability (operability)Image: Second secon	Req-D3.1- D3-hw	The environmental requirements for the camera and edge device shall fulfil current standards and guidelines for intralogistics usage.	М	I	STILL	
Compatibility (Interoperability, co-existence)         Req-D3.1- D3-hw       The vision-based solutions shouldn't require different cameras if possible.       S       I       IML       T3.4         Usability (operability)       Req-D3.1       Definition of Measurement scenarios.       M       I       IMST       T3.2	Commodibil	iter (internenenekiliter og enister				
Net     Intervision-based solutions     S     I     INL     15.4       D3-hw     shouldn't require different cameras if possible.     I     INL     15.4       Usability (operability)     Req-D3.1     Definition of Measurement scenarios.     M     I     IMST     T3.2	Reg D2 1	The vision based solutions	(e) C	Т	IMI	T2 /
Usability (operability)Req-D3.1 -D3Definition of Measurement scenarios.MIIMSTT3.2Image: Second colspan="5">Image: Second colspan="5">Image: Second colspan="5">Image: Second colspan="5">Image: Second colspan="5">T3.2	D3-hw	shouldn't require different cameras if possible.	ى			13.4
Req-D3.1 -D3Definition of Measurement scenarios.MIIMSTT3.2	Usability (o	perability)		-	T	
	Req-D3.1 -D3	Definition of Measurement scenarios.	М	I	IMST	T3.2
Reliability (fault tolerance, availability)	Reliability	(fault tolerance, availability)				

Req-D3.1-	The perception model should	С	Т	IML	T3.4
D3-sw	work even with some dirt on				
	the camera lens.				
Security (cy	yber-security, integrity, confide	ntiality, au	thentici	ty)	
New	The edge device shall be	М	Ι	STILL	
	protected against access from				
	unauthorized users.				
Portability	(adaptability, replaceability)				
Cost				·	
Scalability					
Tools/toolc	hains			•	
Req-D3.1-	A programming interface	М	Ι	STILL	
D3-sw	and/or an interface to state-of-				
	the-art robotic systems shall				
	avist				
	exist.				
Safety				1	

# 6.4. Demonstrator 4 - Vision-based (AI) pick & place robotics for randomly arranged and differently shaped bottles

ID	Requirement	Priority	Verify	Comments	Tasks
Interfaces a	nd connectivity				
Req-D2.3-	Screen and input HW for	М	Ι		
D4	inspection and correction of				
	perception and control modules				
Req-D2.3-	Internet connection for possibility	S	Ι		
D4	to remotely inspect behaviour of				
	perception and control modules				
Maintainab	ility (modularity, analyzability, te	stability)			
Req-D2.3-	Demonstrator should be easily				
D4	maintained by basic operators				
Performanc	e				
Req-	Number of successful picks from	М	D		
D2.3/D3.1-	a random pile in a minute up to 70				
D4					
Req-	95% successful placement of the	М	D		
D2.3/D3.1-	bottle into a socket on first try				
D4					
Compatibili	ty (interoperability, co-existence)				

Req-D2.3- D4 Req-D2.3- D4 Usability (o	Demonstrator should be compatible with an existing production line Demonstrator should be compact size perability)	M	D D		
Reliability (	fault tolerance. availability)				
<b>_</b>	······································				
Security (cy	ber-security, integrity, confidentia	ality, authe	enticity)		
	· ·				
Portability (	(adaptability, replaceability)				
Cost			r	· · · · · · · · · · · · · · · · · · ·	
Req-D2.3- D4	Overall cost of deploying the demonstrator (without R&D) < 200,000 EUR	S	Ι		
Scalability			1		
	Demonstrator can be adjusted to several conveyors/ production lines	S	Ι		
Tools/toolch	ains				
Safety				1	

# 7. Use-case requirements

#### 7.1. Use-case 1

No input received.

#### **7.2.** Use-case 2

No input received.

#### 7.3. Use-case 3 – Tactile Robot Teleoperation

The Tactile Robot constitutes the next generation of collaborative robots, equipped with sensing capabilities to process humanlike tactile sensation. Human safety and labor/skill shortages in industry will be improved dramatically, as potentially dangerous, or complex operations involving inspection, repair, or even decommissioning, will be performed by a remotely controlled Tactile Robot.

The use case will implement safe remote teleoperation via a tactile robot. Humans in the loop will be considered through complex HMI coupled with a digital twin representation of the process implemented in virtual reality. The application will be enabled with high performance AI embedded close to the edge, mitigating motion control errors introduced because of sensor and user input limitations.

ID	Requirement	Priority	Verify	Comments	Tasks
Interfaces	and connectivity				
Req- D3.2-U3- 1-com Req- D3 2 U3	Connectivity of the communications interface for the PolarFire SoC-FPGA (MPFS250T-FCVG484EES) placed at the local user-end with the PolarFire SoC-FPGA (MPFS250T-FCVG484EES) placed at the remote CoBot- and	М	I-D	This connects the local user end to the remote tele- operated robot using two PolarFire SoC- FPGA edge devices.	3.3
Req- D3.2-U3- 3-com	Driver engineering for the RapID-NI-V2007 to interface the PolarFire SoC-FPGA (MPFS250T-FCVG484EES) with the PROFINET-IRT.	М	I-D	This driver for the RapID connects the edge devices to the PROFINET- IRT.	3.3
Req- D3.2-U3- 4-com	SIEMENS S7-1550 for the integration of new devices, time synchronization between devices and reading the messages (data packets) from devices at pre-defined cycle times.	М	I-D	The Programmable Logic Controller (PLC) in Profinet industrial network is the network manager.	3.3

	Optimization of the Frames Per Second (FPS) connectivity between 3D ToF camera and PolarFire edge components	₩	Ι	May need an intermediate device such as a PC\Server	3.3
		S	D		3.2
Maintaina	bility (modularity, analyzability	y, testabilit	<b>y</b> )		
Req- D3.2-U3- 1-com	The UC3 platform should be able to produce test and analysis data such that on- going improvements and maintenance can be carried out to advance the state of the art in latency reduction for local to remote HRI, HMI, tele-operations processes.	W	Ι	A critical requirement is component analytics such that latency improvement research can be carried out as part of on-going research and development.	3.3\3.2
Performan	ice			Ĩ	
Req- D3.2-U3- 1-hw-sw	<b>Frame rate:</b> 5 frames per second at 640 x 480 sized frames.	S	I-D	This research involves continual improvements work in edge-	3.3/3.2
Req- D3.2-U3- 2-hw-sw	<b>Object detection:</b> 90% object detection per frame.	S	I-D	based AI processing and use case related	
Req- D3.2-U3- 3-hw-sw	<b>Latency:</b> Using AI prediction techniques and algorithms, testing is required to identify novelty of such methods for latency minimization in robotic tele- operations.	S	I-D	services.	
Req- D3.2-U3- 4-hw-sw	Application and bespoke development of position tracking algorithms using 3D ToF data, capable of detecting wrist movement of a standing human at a fixed distance from the camera to an accuracy of 98%, at the local end, in	S	I-D		

Req- D3.2-U3- 5-hw-sw	normal lighting conditions with a latency of < 200 ms. Application and bespoke development of object tracking algorithms using 3D ToF data, capable of detecting objects in the remote scene (at the robot/gripper end) in 3D space; objects to be sized at 5 cm or larger.	S	I-D	Applied research into real-world capabilities of ToF camera technologies deployed in an industrial setting. Investigations into object tracking using ToF for typical pick and place tasks at the remote robot end.	3.2
Compatibi	lity (interoperability, co-exister	nce)		L	
Req- D3.2-U3- 1-hw-sw	Co-existence of Information Technology (IT) and Operation Technology (OT) on the same network infrastructure.	W	Ι	This technology will significantly decrease the network wiring that results in lower cost of implementing industrial networks.	2.1/3.3
Usability (	operability)				
Req- D3.2-U3- 1-hw-sw	Development of an intuitive user interface (UI) with options to fully control the robot with functionality for set-up\restart, safety controls, recovery, speed controls, emergency stop, etc. Also, the UI will be required to evolve when new capabilities and functionalities are integrated into the UC3.	W	Ι	This UI will provide value added services at the user end and will evolve with varying use cases.	3.2/3.3

Reliability (fault tolerance, availability)							
Req-	The platform should have in-	S	Ι	This is a critical	3.3		
D3.2-U3-	built fault tolerant			requirement for			
1-hw-sw-	capabilities, be able to			HRI and HMI			
com	recover from user or robot			interactions.			

	errors and fail gracefully as				
Security (c	vber-security, integrity, confide	entiality, a	uthenticity	)	
Req- D3.2-U3- 1-hw-sw- com	There is a requirement to investigate BB9 for cyber security services that can be integrated within the use case platform. This will certainly be a more formal requirement that will be extremely relevant as the use case moves up the TRL scale.	W	Ι	Cyber security is a critical component of future tele- operation platforms and must form an integral service layer at both local and remote ends.	
Portability	(adaptability, replaceability)			I	1
Req- D3.2-U3- 1-hw-sw- com	General requirement(s) that the use case is engineered with the potential for portability and adaptability to varying form of industrial tele-operation tasks for the enablement of remote factory/ production working in the future.	S	Ι	Robotic tele- operation platforms must have in-built flexibility in their architecture for applications to varying use cases in the future.	3.2\3.3
Cost	1	r	1		
Req- D3.2-U3- 1-hw-sw- com	The complexity of engineering robotic tele- operations solutions for manufacturing and other scenarios for the foreseeable future will vary pending the specific use case(s). Variable costs will be a factor until flexible and reusable components are developed and engineered. With this in mind, the requirement in relation to costs for use case three relates to the mandatory conducting of a cost-benefit analysis for any real -world deployment of the tele- operations platform. Such a requirement is required to ensure the project is realistic in terms of typical industrial robotics projects	W	Ι	Cost-benefit analysis is a mandatory requirement for robotic tele- operations projects.	

	that may scale from tens of thousands up to tens of millions in terms of specific industrial deployments.				
Scalability					
Req- D3.2-U3- 1-hw-sw- com	The use case three engineered solution could be able to scale to different users being able to use the platform and also to enable the users to work across different robots.	С	Ι	Multi-user, multi- sensory and multi- robotic platforms	3.2\3.3\3.4
Tools/toolo	chains			1	
Req- D3.2-U3- 1-hw-sw- com	Software development using the VectorBlox SDK which will involve research and deployment of CNNs at the local end for the mapping of HMI-IMU and ToF sensor data streams to robot activations at the remote end and as required for applied task specific object detections at the remote end.	М	I-D	This is ML related research and engineering into the use and deployment of CNNs on the PolarFire edge devices.	3.2\3.3
Req- D3.2-U3- 2-hw-sw- com	Algorithm research and development to detect objects in a frame with dimensions of approximately 5cm in size on the remote robot end.	S	Ι	Remote end object detection research requirements.	3.4
Req- D3.2-U3- 3-hw-sw- com	Develop methods and techniques to transfer object detection inferences and robot movement predictions in a standard format (JSON) to the local user end with a maximum latency of one second or under.	S	I-D	Transfer of AI inferences between remote and local ends.	3.4
Req- D3.2-U3- 4-hw-sw- com	Research, engineering and development of an applied sensory fusion algorithm that has functionality to fuse 3D ToF depth imagery (ADI ToF camera), motion tracking sensors (Vive motion trackers) and IMU data (from the	S	I-D	Research into AI\ML prediction techniques at the remote end and also as required at the local end of the tele-operations platform.	3.4\3.2

	Tyndall glove) in order to estimate/ predict human arm, wrist and finger movement				
	estimates for translation to robot arm and gripper				
	movements at the remote end.				
				Research into	
Req- D3.2-U3-	Research and investigation into how low-level robot	S	I-D	auto-prediction for latency reduction between the local	3.4
5-hw-sw-	coordinate geometry data can be translated into a sub-set of			and remote edge	
com	higher-level gestures and such			components.	
	that AI\ML techniques may be				
	As a result, opportunities may				
	exist, such that auto-prediction				
	may be investigated in the			Fudda and	
	between local user and remote			security services as	
	robot ends.			part of the	
Peg	The development of a secure	S	I-D	platform toolchain.	
D3.2-U3-	method of communications				
6-hw-sw-	between the local and remote				
com	ends for the quality assured			Conversion of user	
	activation data (gesture			generated	
	detection and\or gesture			movements into	
	predictions).	М	I-D	activations at the	3.2\3.4
				remote end.	,
Req-	For high-level gestures				
7-hw-sw-	local or remote end, then there				
com	is a requirement for the				
	conversion of communicated				
	commands at the remote end				
	for arm movements and			Platform	
	based on the pre-defined			and HW tools.	
	industrial task activation steps.				
Dag	Concelly quality a Dia and	М	I-D		3.2\3.3
D3.2-U3-	related SDKs (C/C++.				
8-sw-com	Python) to interface the				

Req- D3.2-U3- 9-sw	remote PolarFire SoC-FPGA (MPFS250T-FCVG484EES) edge device with the UR16e CoBot and the UR16e finger gripper device. Produce a number of use case related data sets, incorporating HMI-IMU (tactile glove),	М	I-D	AI\ML dataset generation for model testing and evaluation.	3.4
	motion trackers and ToF (depth camera) sensor data streams to be used in both cloud and PolarFire embedded AI\ML related research.	S	I-D	AI\ML algorithms research, evaluation and re- engineering.	3.4
Req- D3.2-U3- 10-hw	Research and development using generally available open-source APIs and SDKs to develop, test and re- engineer (as applicable) detection algorithms for the various 3D ToF camera data used in the use case sensor architecture			AI\ML algorithms research, evaluation and re-	
Req- D3.2-U3- 11-hw	Evaluate and utilize publicly available pre-trained real time object detection models with a significant laval of accuracy	S	I-D	engineering.	3.4
	such as R-CNN, R-FCN, or YOLO for the processing, object detection and inference over RGB image frames.	G		AI\ML algorithms research, evaluation and re- engineering.	2.4
Req- D3.2-U3- 12-hw	Evaluate and utilize publicly available 3D depth data sets such as Matterport3D, NYU- Depth V2, or ARKitScenes that have facilitated significant level of depth prediction accuracy for ML training in relation to ToF depth data.	3	U-1		5.4
Safety		~			
Req- D3.2-U3- 1-hw-sw	Continually addressing the health and safety aspects of the functionality to be	S	I-D	User safety as a critical, mandatory and core aspect of	

	implemented at both the user local end and the remote robot end of the tele- operation platform.			the use case research into tele- operated robotics.	
General	1	1	1	1	•
Req- D3.2-U3- 1-hw-sw	<ul> <li>Develop a small set of initial test-cases to focus the use case three. For example, tele-operation without digital twin.</li> <li>Scenario 1: Robot is driven to pick and drop two small objects (e.g. stress balls) into two bins. Remote user\operator also has two balls and two bins. User\operator picks and drops balls in bins; robot mimics operator actions.</li> <li>Scenario 2: Robot is driven to pick and drop two small objects (e.g. stress balls) into two bins. User\operator actions.</li> <li>Scenario 2: Robot is driven to pick and drop two small objects (e.g. stress balls) into two bins. Remote user\operator actions.</li> <li>Scenario 2: Robot is driven to pick and drop two small objects (e.g. stress balls) into two bins. Remote user\operator, operating in VR environment, has digital twin representation of the two balls and two bins. User\operator picks and drops balls in bins; robot mimics operator actions driven to pick and two bins. User\operator picks and drops balls in bins; robot mimics operator actions driven to pick and two bins. User\operator picks and drops balls in bins; robot mimics operator actions.</li> </ul>	S	I-D	On-going experiment activities for use case three.	3.2\3.3\3.4

#### 7.4. Use-case 4

No input received.

#### 7.5. Summary of the specifications and requirements

The specifications and requirements as collected from the above inventory are sub-divided is a few groups as mentioned in section 3.3:

- Operation: supply, power, wireless charging and/or contactless power, remote adjustments of settings and configuration, temperature range of application
- Performance: speed, latency, refresh rate, measurement distances, resolution
- Serviceability: remote firmware update, self-calibration, identification to upper system
- Interfacing: wireless, wired, bandwidth, QoS
- Security: cyber-security, robust data formats and package received acknowledgement
- Manufacturability: moulding, IP-rating
- Useability: beyond IMOCO4.E scope

What is less or not highlighted as outcome of this 2nd survey for D3.2:

- Loss of wireless link due to jamming and the necessary time to recover.
- In case of smart sensors, how to forward errors or out of range sensor results.
- W.r.t. supply/power, none of the partners have referred to PoE, though Ethernet and EtherCAT is often mentioned aside USB-2/3 and ProfiBus.
- The DT, AI descriptive models for the to-be-used HW device: sensor, actuator, controller, including its limitations.
- The explicit requirements necessary for IMOCO4.E hardware beyond the COTS available parts and systems

It is expected that the above issues will be resolved, implemented, circumvented by the partners involved while implementing the various tasks.

#### Public (PU)

#### 8. Operability requirements

The systems must be able to operate in various environments e.g., semiconductor, physical and chemical (cleanroom) laboratory environments as well as automotive production areas with welding equipment. As such, there will not be a one size fits all boundary constraint.

The main differences will be in:

- Measurement ranges of the physical quantities and their tolerances w.r.t. to their electrical representation
- Temperature, pressure, humidity range
- Pollution degree
- Power quality
- EM environment, including EM-fields from nearby wireless connectivity, motion control and wireless power transfer (WPT)

#### 8.1 Safety and safe operation

The term safety applies in the IMOCO4.E methodology to the human environment w.r.t. generated noise, pollution, radiation as well as dangerous motion from autonomous robots and production machinery.

#### 8.1.1 Motion safety

As torque and force are the paramount parameters with the autonomous robots and production machinery, they need to be well guarded to ensure human safety of the operators as well as a limitation on foreseeable machine damage.

Though the focus in IMOCO4.E will be on electrical autonomous robots and production machinery, also hydraulic and pneumatic sources for motions must be taken into account (when used).

The two "sister standards" <u>IEC/EN 60204</u> series (Machine Directive: 2006/42/EC) and <u>ISO 12100</u> (Risk Assessment and Risk Reduction) are closely related to regulatory aspects. Both standards are transposed as national / regional standards across the world, including in Europe, US, China, Japan, and many other countries and their closely related regulatory activities.

Further examples of horizontal safety standards include:

<u>IEC 61140</u> (Protection against electric shock)

IEC 60529 (Protection by enclosures)

IEC 60664 (Insulation coordination for equipment within low-voltage systems)

In the area of group safety and product standards, the following could be regarded as highly "regulatory relevant":

IEC 60335 series (Household appliances)

IEC 61010 series (Industrial equipment)

IEC 62368-1 series (Safety of multi-media equipment)

IEC 60598 Luminaries

IEC 60601-1 (series) Medical electrical equipment

The EN versions of these standards, for example, are listed in the <u>Official Journal of the European</u> <u>Commission</u> to support the respective European Directives. The application of these standards also leads to acceptance of products by the authorities in countries such as the United States and China.

#### 8.1.2 Electrical safety

All electric and electronic autonomous robots and production machinery needs to be electrical safe according to the international requirements (and their national deviations). Typically, these requirements are part of the Machine Directive as well as the Low Voltage Directive.

# 8.1.3 Electromagnetic compatibility: emission and immunity requirements

All electric and electronic equipment must satisfy the European EMC directives, as applicable to the products considered.

#### 8.1.4 Radio equipment

All products which incorporate wireless and/or radio related functions must satisfy the Radio Equipment Directive (RED), for which the EMC requirements are superseded i.e., extended by the ETS 301-489-1. Additionally, the wireless and/or radio related functions must satisfy the ETS related requirements for the products used. Pre-qualified modules may be used to circumvent testing against the specific ETS. The use of short-range-devices (SRD) are recommended to avoid formal type testing.

# 9. Conclusion

After collecting all the feedback from the IMOCO4.E partners, involved with the Layer 1 developments, from either WP3 and/or the Pilots, Use-Cases and/or Demo's, it shows that the most stringent specifications and requirements apply functionality.

To serve functionality, measurement speed, refresh rate, latency, bandwidth, data reliability: data acknowledge-after-reception, timestamping, a wide range of operational temperatures, are of utmost importance.

Aside these requirements, it is still assumed that multiple video frames shall be captured fully with high frame rates and high resolution and processed at a processing host rather than within a smart(er) camera which can be remotely configured to obtain the relevant data only, keeping processing latency and interface restrictions in mind.

Most foreseen Layer 1 applications rely on existing interface protocols, either wired: Ethernet or EtherCad, or wireless: BLE, as where power needs for the application needs to be supplied from rechargeable batteries, an interface cable: USB-2/3 and or ProfiBus, wired (24 volts DC) or contactless for charging or power transfer.

With the development of new sensors and actuators, it is assumed that these devices can be remotely updated for firmware, configuration and settings, to make them re-usable.

With today's designs, the need for (cyber)security is also on the list as due to the open-network chosen: Ethernet, the likelihood for data corruption or data tapping will be possible.

The need to develop industrial reproduceable concepts focused on manufacturability is emphasized too.

Aside cyber-security, little emphasis is given to terroristic actions like jamming: in particular wireless interfaces, which can act on these new systems too. The main criticality is the time necessary to recover i.e., re-establish a link without the loss of critical functionality of the running process.

#### **10.References**

[1] T.b.d.